Advanced SQL Concepts

Improve your SQL skills to take full advantage of Query

This document assumes you are already familiar with the topics in the “Introduction to SQL”
help document.

For more in-depth, technical coverage of the topics introduced in this section, please refer to the
official Redshift documentation, which provides explanation and examples for all supported
commands and functions.

public.people

The examples in this document use a hypothetical table, ‘public.people’. Assume this table
contains one row per person and contains the following data about each individual:

Column Name Column Description Data Type Example Value

id Unique person identifier integer 12345

first_name Person’s first name varchar FOZZIE

last_name Person’s last name varchar BEAR

email Person’s email address varchar wockawocka@muppets.com
state Person’s state of residence char(2) CA

signup_date Date the person first signed up for date 2008-11-04

the organization’s newsletter

is_active Contains 1 if the personis currently integer 1
subscribed any newsletter, O if not

months_subscribed = How many months the person has integer 80
been subscribed

© 2016 Civis Analytics, Inc., All Rights Reserved

http://docs.aws.amazon.com/redshift/latest/dg/cm_chap_SQLCommandRef.html
http://docs.aws.amazon.com/redshift/latest/dg/c_SQL_commands.html
http://docs.aws.amazon.com/redshift/latest/dg/c_SQL_functions.html

Every column in Redshift is assigned a data type. These are the supported types, as listed in the
Redshift documentation:

Data Type

smallint
integer
bigint

decimal(a,b)

real
double
boolean
char(n)

varchar(n)

date

timestamp

Aliases
int2

int, int4
int8

numeric

float4
float8, float
bool

character

character varying, text

timestamp without timezone

Description

Signed two-byte integer
Signed four-byte integer
Signed eight-byte integer

Exact numeric of selectable precision (a digits before
decimal, b digits after)

Single precision floating-point number
Double precision floating-point number
Logical Boolean (true/false)
Fixed-length (n) character string

Variable-length character string with a user-defined
limit (n)

Calendar date (year, month, day)

Date and time (without time zone)

Storing dates with the date column type enables a host of useful functions.

System date and time

You canretrieve the current date without a timestamp using current_date, or the current date
with a timestamp (in GMT) using getdate(). To find all rows corresponding to users who signed
up before today, for example:

select *

from public.people

where signup_date < current_date

© 2016 Civis Analytics, Inc., All Rights Reserved

Date parts

To extract a date part, use extract. This is useful for aggregating data by month or year, for
example. The following query provides a breakdown of signups per month since October 2014:

select extract(year from signup_date) as signup_year,
extract(month from signup_date) as signup_month,
count(*) as num_signups

from public.people

where signup_date >= '2014-10-01'

group by 1,2

order by 1,2

Date interval functions

You can use the dateadd function to determine the number of days, weeks, months, quarters,
etc. since a given date. In the following query, we count how many users signed up in the past
three months:

select count(*)
from public.people

where signup_date <= dateadd(month, 3, current_date)

To get dates within a given interval—before or after—you can use datediff. The following query
returns the average tenure, in days, for current newsletter subscribers:

select avg(datediff(day, signup_date, current_date)) as avg_tenure
from public.people

where signup_date < current_date

TO_DATE

If your raw dates are saved in column of type varchar instead of date, you can use the to_date
function, specifying the raw date column and the raw date format string, to convert them to the
default date style ('YYYY-MM-DD’) and enable date functionality. Assume in the following
example you have a varchar column called ‘end_date’ with datessuchas‘1/12/15":

select *
from schema.table

where to_date(end_date, 'MM/DD/YY') > '2014-01-01'

© 2016 Civis Analytics, Inc., All Rights Reserved

The preceding query returns records with an end_date after January 1, 2014.

The to_date function can deal with a variety of raw date formats. The format string for a column
with a string date, such as ‘January 12, 2015’, for example, is ‘Month DD, YYYY’. A full datetime
format strings reference is available in the official Redshift documentation.

Your data may be spread across more than one table. You can use join to connect two or more
tables based on columns they have in common.

Assume we have a table ‘public.subscriptions’ with the following layout:

Column Name Column Description Data Type Example Value
subscription_id Unique subscription identifier integer 52758
person_id Person identifier (same as ‘id’ columnin | varchar 12345

public.people)

supporter_list flag Contains 1 if the personis subscribedto integer 1
the supporter email list, O if not

volunteer_list flag Contains 1 if the personis subscribedto ' integer 1
the volunteer email list, O if not

donor_list flag Contains 1 if the personis subscribedto integer 0
the donor email list, O if not

Since public.subscriptions has a ‘person_id’ column that corresponds to the ‘id’ columnin
public.people, we can use a join to link the two tables.

We can then select columns and/or aggregates from either table. In this case, we get a count of
active users by state and a count of how many people in each state are subscribed to the donor
list. Since identically-named columns may appear in both tables, you must specify which table’s
version of the column to use by preceding the column name with the table name and a period:

select state, count(distinct people.id) as num_people,
sum(subscriptions.donor_list_flag) as num_donors

from public.people

join public.subscriptions
on subscriptions.person_id = people.id

where people.is_active =1

group by 1

order by 1;

© 2016 Civis Analytics, Inc., All Rights Reserved

http://docs.aws.amazon.com/redshift/latest/dg/r_FORMAT_strings.html

When using join—also referred to as inner join—you will only consider records for which the
join key is present in both tables. In other words, if person is not subscribed to any email lists,
and therefore has no corresponding records in public.subscriptions, they are not included in the
‘num_people’ count in the above query.

To select all rows regardless of whether they have corresponding records in the joined table,
you can use a left join—also referred to as a left outer join:

select state, count(distinct people.id) as num_people,
sum(subscriptions.donor_list_flag) as num_donors

from public.people

left join public.subscriptions
on subscriptions.person_id = people.id

where people.is_active =1

group by 1

order by 1;

The diagram below illustrates the difference between these two join types:

public.
subscriptions

subscriptions

public.paople

(inner) join left (outer) join

© 2016 Civis Analytics, Inc., All Rights Reserved

You can use case to organize data using if-then-else logic, defining one or more logical condition
in each when clause. This query buckets months_subscribed into three groups, assuming all
values are valid:

select case when months_subscribed < 6 then 'Less than 6 months'
when score_band between 6 and 12 then '6-12 months'
when score_band > 12 then 'More than 1 year'
else 'Invalid value'
end as months_subscribed_bucket,

count(*)
from public.people
group by 1;

NTILE and subqueries

You can use the ntile function to group data in n buckets, such as quartiles and deciles.

This query buckets months_subscribed into four equally-sized groups and returns the average

subscription length for each group. Note that it uses a subquery. You can treat any query like a
table, and therefore select from and/or join to it, by wrapping it in parentheses:

select subscription_quartile, avg(months_subscribed), count(*)
from (
select id, months_subscribed, ntile(4) over(order by months_subscribed asc) as
subscription_quartile
from public.people
where months_subscribed is not null
) person_by quartile
group by 1
order by 1;

© 2016 Civis Analytics, Inc., All Rights Reserved

