

For additional help, contact support@civisanalytics.com

Intro to SQL
Learn to write SQL to interact with your data via Query

SQL—short for “Structured Query Language” and pronounced either “sequel” or “ess-queue-el”
depending on who you ask— is a programming language for interacting with data. Query, the
Civis platform’s in-browser SQL client, allows you to execute SQL queries on your data. By
leveraging various commands, you can flexibly explore, shape, and aggregate your data.

For more in-depth, technical coverage of the topics introduced in this section, please refer to the
official Redshift documentation, which provides explanation and examples for all supported
commands and functions.

Clusters, Databases, Tables, and Schemas
Before we get started, it is important to understand the difference between these related terms.
A cluster is a group of nodes, which refers to the physical hardware on which data is stored and
processed. A cluster may have one or more database, which is made up of tables. A table
consists of rows and columns, much like an Excel spreadsheet. A schema functions like a folder
or an entire Excel workbook, holding related tables.

A note on syntax
SQL is not case-sensitive. Type functions and keywords in whatever case you are comfortable.
Likewise, SQL is not line-sensitive. For the sake of readability in this document, keywords are
preceded by line breaks, but these may be omitted without changing the nature of the queries.

Basic query structure
Below is the structure of a select query. Keep this order in mind. Queries will fail if clauses aren’t
defined in this order:

select list

from schema . table

where condition

group by list

order by list

limit n ;

© 2015 Civis Analytics, Inc., All Rights Reserved

http://docs.aws.amazon.com/redshift/latest/dg/cm_chap_SQLCommandRef.html
http://docs.aws.amazon.com/redshift/latest/dg/c_SQL_commands.html
http://docs.aws.amazon.com/redshift/latest/dg/c_SQL_functions.html

For additional help, contact support@civisanalytics.com

public.people
The examples in this section use a hypothetical table, ‘public.people’. Assume this table
contains one row per person and contains the following data about each individual:

Column Name Column Description Data Type Example Value

id Unique person identifier integer 12345

first_name Person’s first name varchar FOZZIE

last_name Person’s last name varchar BEAR

email Person’s email address varchar wockawocka@muppets.com

state Person’s state of residence char(2) CA

signup_date Date the person first signed up for
the organization’s newsletter

date 20081104

is_active Contains 1 if the person is
currently subscribed to the
organization’s newsletter, 0 if not

integer 1

months_subscribed How many months the person has
been subscribed

integer 80

You can view a full layout and sample rows for this or any other table by navigating to it in
Query’s database browser, located on the left side of the page, and clicking the arrow on the
right-hand side of that pane to display the table details:

© 2015 Civis Analytics, Inc., All Rights Reserved

For additional help, contact support@civisanalytics.com

SELECT...FROM

Let’s look at a basic SQL query:

select *

from public.people;

The above query will return a list of all rows and all columns in the public.people table. You can

use the select command to read data from tables. In the from clause, name the table you want to
select from. A semi-colon is placed at the end of each query.

The asterisk operator (*) means “all columns.” You can instead select specific columns by listing
them, separating each with a comma:

select id, is_active

from public.people;

LIMIT

We may want to look at a subset of records using limit. Here we select only five rows:

select id, is_active

from public.people

limit 5;

The limit clause should always appear last .

WHERE

What if we want to look only at records where the ‘is_active’ column is set to 1 (which, in this

case, means true)? You can filter results using a where clause:

select id, is_active

from public.people

where is_active = 1

limit 5;

© 2015 Civis Analytics, Inc., All Rights Reserved

For additional help, contact support@civisanalytics.com

The query above will only return records marked as active. You can define conditions for the

where clause using the following operators:

= Equal (for booleans, ‘is’ or ‘is not’ may be used, ex. is_active is true)

!= or <> Not equal

<, > Less than, greater than

<=, >= Less than or equal to, greater than or equal to

between In an inclusive range, typically used for numeric or date ranges
ex. signup_date between ‘20140101’ and ‘20140131’

in In a comma-separated list of values
ex. state in (‘IL’, ‘NE’, ‘CA’)

ilike Matching a pattern (case-insensitive); use one or more ‘%’ to denote wildcards
ex. first_name ilike ‘%Bob%’ would match ‘Bob’, ‘Bobby’, ‘Jim Bob’, etc.

like Matching a pattern (case-sensitive); use one or more ‘%’ to denote wildcards
ex. first_name like ‘%BOB%’ would match ‘BOBBY’, but not ‘Bob’

Note that strings and dates must be enclosed in single quotes, while booleans and numeric

values can be unquoted. To filter on text that includes a single quote, replace each instance with
two single quotes to escape the character, ex. ‘Bob’s’ would become ‘Bob’’s’.

You can filter by multiple conditions by adding ‘and’ before successive conditions:

select id, is_active

from public.people

where is_active = 1

and state = 'IL'

limit 5;

To filter by one condition or another, use ‘or’:

select id, is_active

from public.people

where is_active = 1

or state = 'IL'

limit 5;

© 2015 Civis Analytics, Inc., All Rights Reserved

For additional help, contact support@civisanalytics.com

For complex conditions, use parentheses to clarify order of operations. To find records

corresponding to active subscribers from Illinois or all individuals who signed up after
November 1, 2014, for example:

select id, is_active

from public.people

where (is_active = 1 and state = 'IL')

or signup_date > '20141101'

limit 5;

ORDER BY

Results will be returned in a non-deterministic order (i.e. in no particular order) unless you
include an order by clause. You may order by any column in the table you select from, even if the
column is not selected. By default, rows are sorted in ascending order. You can override this by
adding ‘desc’ after the order by clause.

select id, is_active, signup_date

from public.people

order by signup_date desc

limit 5;

This query will return the id, active status, and signup date of the five most recent subscribers,

with the most recent first.

© 2015 Civis Analytics, Inc., All Rights Reserved

For additional help, contact support@civisanalytics.com

GROUP BY / Aggregates

Selecting individual records is, of course, of limited utility. Aggregates unleash the analytic

power of SQL. Aggregate functions include avg, count, min, max, and sum. A full list of
supported aggregate functions is available in the Redshift documentation.

One of the most common use cases for an aggregate function is a simple row count of a table:

select count(*)

from public.people;

To get a count of non-null values in a given column, specify the column. This query will tell you

for how many people the ‘state’ field is populated:

select count(state)

from public.people;

To count only unique values, use distinct:

select count(distinct state)

from public.people;

Since there are 51 possible values for this column (50 states plus the District of Columbia), the

above query will return the number 51.

You can get aggregates grouped by another column by adding a group by clause. This query will
show how many subscribers are from each state:

select state, count(*)

from public.people

group by state

order by state;

© 2015 Civis Analytics, Inc., All Rights Reserved

http://docs.aws.amazon.com/redshift/latest/dg/c_Aggregate_Functions.html

For additional help, contact support@civisanalytics.com

You can also group by multiple columns. When using an aggregate function, you must group by

all other columns listed in your select. As a shortcut, in both group by and order by clauses you
may refer to columns by their numeric position in the select list:

select is_active, state, count(*)

from public.people

group by 1,2

order by 1,2;

When using aggregates like avg, specify what column you want to aggregate by enclosing it in

parentheses after the function name. Since aggregate columns will by default be titled with the
function name, you may wish to give them aliases using as.

This query will return the average subscriber tenure in months by state in descending order by
tenure:

select state, avg(months_subscribed) as avg_tenure

from public.people

group by 1

order by 2 desc;

You can use multiple aggregate functions in the same query, as long as you group by the same

column(s):

select state, count(*), min(months_subscribed) as min_tenure,

 max(months_subscribed) as max_tenure, avg(months_subscribed) as avg_tenure

from public.people

group by 1

order by 1;

© 2015 Civis Analytics, Inc., All Rights Reserved

For additional help, contact support@civisanalytics.com

CREATE TABLE AS

You can save query results as a new table by preceding your select command with create table

schema.table as, specifying a new and unique table name:

create table scratch.active_ids as

 select id

 from public.people

 where is_active = 1;

GRANT

By default, only you will be able to access tables you create. To allow other users to view your

table in Civis and select from it in Query, use grant select. You can specify usernames or user
groups (by prefacing the group name with ‘group’):

grant select on scratch.active_ids to username, group civis;

DROP TABLE

You can get rid of any table you create—but not tables created by other users—with drop. Be

careful, as this action is irreversible!

drop table scratch.active_ids;

CONCLUSION
Once you have grasped these concepts, you may want to explore more advanced SQL
techniques. Our “Advanced SQL” help document covers topics including: how to get data from
multiple tables (joins), date functions, case statements (which allow you to apply if-then-else
logic), and subqueries.

ADDITIONAL READING

For more information on SQL best practices, read this helpful blog post about 10 Rules for a
Better SQL Schema.

© 2015 Civis Analytics, Inc., All Rights Reserved

https://www.periscope.io/blog/better-sql-schema.html
https://www.periscope.io/blog/better-sql-schema.html

